
Teaching Computer Science through Problems, not Solutions

SAMUEL B. FEE & AMANDA M. HOLLAND-MINKLEY


Information Technology Leadership, Washington & Jefferson College, Washington, PA, US

Regardless of the course topic, every instructor in a computing field endeavors to engage their students

in deep problem-solving and critical thinking. One of the specific learning outcomes throughout our

computer science curriculum is the development of independent, capable problem solving – and we

believe good pedagogy can bring such about. Our experiences indicate to us that students improve their

ability to analyze and solve complex computational problems when we pursue pedagogies that support

them in developing these skills incrementally. Specifically, we pursue a problem-based learning

approach that we apply individually in each course as well as across the entire curriculum of our

department, instead of solely considering our pedagogy on a course-by-course basis.

Keywords: problem-based learning; computer science curricula

1. What is Problem-Based Learning?

Problem-Based Learning (PBL) is a pedagogy that centers student learning around open-ended, student-

driven problems facilitated by an instructor in order to achieve the learning outcomes of a course. It appeals to

a cognitive constructivist epistemology which concludes from study and experience that learners gain more

through relating educational material to their own real-life experiences, and that such experience informs their

ability to conceptualize content (Duffy & Jonnasen, 1992). Constructivism calls for learning opportunities that

are experiential, active, collaborative, and that also develop problem-solving skills (Jonnasen, 2000). The goal

here for the learner is not to passively absorb and regurgitate information; but rather to actively engage with

the content, work through it with others, relate to it through an analysis with personal experience, and

effectively solve problems with the corresponding knowledge gained. Thus the ultimate goal is the

development of critical-thinking abilities.

This of course means that the student is an active participant in the learning process (Bonwell & Eison, 1991).

The result is a necessary relaxing of the traditional classroom structure so that students can pursue ideas in a

fashion that makes sense to them individually, rather than the specific prescribed approach that the instructor

may have in mind. Indeed, many approaches could be relevant for attaining the knowledge developed by the

intellectual task at hand. So, students need to be free to develop those knowledge constructions in their own

way. This does not mean that there is no structure to the process as some might suggest (Kirschner, Sweller &

Clark, 2006). But rather, that a looser structure governs the endeavor and allows the student to maneuver in

several different directions under the guidance of an engaged instructor. Of course, there are numerous

pedagogical approaches that enable this way of knowing. But one of the more promising approaches that has

served us well in the need for developing critical thinking skills is problem-based learning.

Problem-based learning has seen its largest and earliest adoption in the medical education field. Specifically,

the approach orients students “toward meaning-making over fact-collecting” (Rhem, 1998). However, much

of the recent literature clearly articulates the pedagogical approach and specifically discusses it in relation to

various fields of inquiry outside of medical education. For an in-depth discussion, the inaugural issue of The


 Corresponding author. Email: amh@washjeff.edu

Interdisciplinary Journal of Problem-based Learning contains a particularly useful introduction that lays out

the essential elements of PBL (Savery, 2006).

For our work, we have found several underlying themes to be particularly cogent toward our instructional

activities. Specifically, PBL provides a context for the content of our courses; meaning that many of the

individual concepts that each course identifies are drawn together to solve the problems that are submitted to

students through the various projects that they work on during their coursework. It is important then to draw

the distinction that PBL presents specific problems for students to solve – this is not the same as working on

projects. The advantages of project work in computer science courses, such as the increased engagement of

students and the relationship to professional practice, are well understood (Fincher & Petre, 1998). Thus it is

common to assign projects as a way for students to illustrate their learning, and indeed to assess that learning.

We do the same. The importance here is recognizing that we are not solely doing project work, but also

solving specific problems based upon the content knowledge that has been developed in class. Such

scaffolding is integral to the process as students use the content provided along with their own experience, to

construct knowledge relating to the problem at hand (Collins, et al. 1991). PBL and project-based learning are

similar in that there is a shared goal of successfully completing the activity; however, different in that projects

typically posses more structure to a supplied and more explicit goal with more direct guidance from the

instructor. Problems on the other hand focus on the learner's role in identifying outcomes and parameters for

success (Savery, 2006).

When implementing PBL, we are trying to help students find solutions to problems contextualized

specifically within the content of their courses. Typically, these experiences take the form of group projects;

but the work can be pursued effectively on an individual basis as well. The process is by no means easy –

developing good problems for student to solve is a critical step in providing effective instruction (Duch, Groh

& Allen, 2001). These problems need to be reasonably well understandable as students begin developing their

problem solving skills, but increasingly ill-structured as students progress throughout their coursework.

Developing quality problems is quite hard – especially when considering the disparity of student knowledge

in any given class – and considerable instructor time must be devoted to the process. Furthermore, PBL

requires considerable amount of effort working directly with students, as the instructor must be available to

mentor students in the problem-solving process. Such mentoring is increasingly diminished as the students

become more capable of such thought on their own; but at the introductory level this mentoring requires

considerable effort on the part of the instructor to remain effective.

While PBL can be applied in any discipline, its appeal within computer science is clear. Many of the courses,

such as programming or software engineering courses, are essentially courses designed to teach problem

solving. With the rapid advances within the field, it is also of particular concern that students understand how

to be good independent learners. We will particularly value a pedagogy that results in graduates who are able

to educate themselves about new technologies and integrate them into their repertoire of problem-solving

tools. In the ACM’s 2008 computer science curriculum interim revision, six characteristics of computer

science graduates were described: a systems-level perspective, an appreciation of the interplay between theory

and practice, a familiarity with common themes and principles, significant project experience, attention to

rigorous thinking, and adaptability (ACM, 2008). The PBL approach directly supports the last three

characteristics, and makes itself open to, with a careful selection of problems, development of the first three

characteristics as well.

2. Applying Problem-Based Learning at the Curricular Level

Often problem-based learning is described as it applies to a single course. Instructors are encouraged to give

students small initial problems and gradually add complexity while removing specific guidance. The hope is

that by the end of the course students will be able to tackle real-world problems, and ideally broadly-specified

problems that they have selected for themselves. Students will take increased ownership of their learning and

will experience the pitfalls and dead ends of a realistic problem-solving process. This is a very appealing

picture, but when faced with the realities of the average college classroom, a pure application of the problem-

based learning pedagogy can be challenging.

Students often enter the ITL major at W&J with an interest in the particular tools that they will be using, or a

desire to construct the types of products they see other students generating in the courses. While this is

natural, and in fact provides good motivation to the students as they pursue difficult tasks, few students enter

our courses with a stated intention of becoming better problem solvers. They enter wishing to learn Java,

SQL, or PHP, or perhaps to build a dynamic website, analyze their network traffic, or develop a video game.

An appreciation for the general skill of problem solving only comes later in the curriculum, or after they have

graduated and entered the work force. This provides a particular challenge when making this skill central to

our curriculum.

One of the frequent complaints that we hear from our students is that they are being asked to do things we

"have not shown them how to do." Inevitably, what this means is that we have shown the students all of the

pieces that will be required to solve a problem, but we have not shown them explicitly how to coalesce these

together in order to reach their goal. From an instructor's perspective, this is purposeful. The process they are

expected to follow will have been illustrated and practiced, but the student is now invited to explore how this

process applies to a new setting. Without experiencing the process of experimenting with possible solutions

and pursuing paths to determine if they are fruitful or not, students will not be able to become self-sufficient

problem solvers. But the focus on independent solving and student-directed exploration encouraged in

problem-based learning can lead to novice students feeling overwhelmed by the degree of flexibility they

have been permitted (Kay et al., 2000). There is also a conception on students’ parts that assignments will ask

them to do highly structured problems that closely resemble problems they have been shown, and that can be

solved by applying the same steps with few adjustments. They may not be familiar with the complexity of

decomposing a problem into its parts and searching for a solution, particularly when an aspect of the problem

is defining what a good solution looks like. There is value in relating this disconnect between a student’s

perception of what a problem is and an instructor’s, or an employer’s, perception to the notion of a culture

clash between students and faculty that must be broached (Kolikant & Ben-Ari, 2008). The early stages of

PBL can be treated as a tool for closing the cultural gap by exhibiting for students an alternate model for

problem definition and solution. Instructors then must expect to introduce their students to this skill and help

them develop their problem solving abilities. While it is appropriate to allow students a certain degree of

mental discomfort and uncertainty, it is important that the creative leaps they are being asked to make are

within their grasp and that they can see a path to success with reasonable effort on their part. Our challenge is

to allow students to experience these frustrations while preventing their frustration from becoming so severe

they give up. The scaffolding provided by a PBL approach – especially when applied across numerous

courses within a curriculum – leads students effectively along this path.

Given the centrality of problem-solving to all academic endeavors, and to the entire breadth of a computer

science curriculum, it seems unrealistic to expect students to achieve a high level of proficiency during a

single course, particularly given the modest initial starting point of many new college students. It seems

preferable to view problem-solving skills as something that must be developed over a longer stretch of time -

most likely the student's entire college career. For novice problem-solvers, simply familiarizing them with the

idea that there may be more than one way to approach a problem, and that exploration is encouraged, may be

as large a step as they are prepared to take. It is, however, a step that would set these students up for greater

success in later courses that presuppose that initial comfort with the tenets of problem-based learning. For this

reason, we propose using problem-based learning as the framework for an entire curriculum.

There are secondary advantages to integrating problem-based learning across a curriculum. This approach

offers an ideal opportunity to encourage students to pursue self-regulated learning. Students are supported in

self-regulated learning when they are given opportunities, ideally explicitly through classroom tasks, to

practice the necessary skills of managing their own learning, including time management, goal awareness, and

appropriate use of peers and faculty in supporting their learning (Pintrich, 1995). Like problem-solving, self-

regulated learning must be developed incrementally over time and the same activities that model the breaking

down of problem solving can also be used to illustrate to students a general process for learning. Additionally,

because of the tensions described above that some students may experience when first enrolling in a PBL

course, by implementing the approach across all courses in the discipline, students are shown that this is a

valid way of pursuing computer science education and come to expect this approach in their later courses

without significant orientation. Some PBL practitioners have also expressed concern that when PBL is

implemented in introductory courses but not followed at the higher level, the positive retention effects seen

early on may be reversed as students are faced with a more conventional course format (Kay et al., 2000).

It is worth noting that implementing a problem-based curriculum represents a significant commitment on the

part of the faculty involved. As we discussed above, mentoring students through their individual struggles

with problem solving experiences can be time intensive. When students are encouraged to develop their own

problems and solution strategies, faculty must plan on spending additional time during the semester to support

these efforts. For these reasons, a problem-based curriculum is likely to be most effective as a conscious effort

on the part of an entire department, where the additional workload will be recognized and supported. Course-

load decisions and scheduling can be done with an awareness of and respect for the obligations of PBL,

particularly at the introductory level.

At a high level, then, when applying problem-based learning across a curriculum, we propose that instructors

should plan on having entry level courses simply introduce students to the process of problem solving and the

fact that they may be asked to approach novel problems with a willingness to explore and innovate.

Instructors should expect to provide a fair degree of guidance at this level about how particular problems

ought to be solved, leaving students with modest creative gaps to fill in. As students progress through a degree

program, the scope of the problems they will be expected to tackle will increase in complexity as the degree

of guidance they are given about how to solve the problem will decrease. The goal, by the end of their college

career, is to be able to take a significant real-world problem requiring an entire semester's worth of effort and

complete control over the process and produce results satisfying to a real-world standard.

3. Information Technology Leadership and the Liberal Arts

At Washington & Jefferson College, the Information Technology Leadership department selects from more

traditional IT and computer science curricula to design an interdisciplinary computing major that integrates

strongly with the liberal arts tradition. The ITL major allows students to customize a selection of courses that

meet their long-term goals, whether they intend to pursue a directly technical career or one where technical

skills play a valuable supporting role. Graduates of our program have gone on to graduate studies in

information security, IT management, and entertainment technology. They have pursued traditional

programming and system administration careers but have also pursued more entrepreneurial ventures and

branched out into human resources and technical writing. This variety of goals is supported by offering

students a flexible curriculum. ITL majors can select upper-level courses from any of three different emphases

including computer science (covering data structures, security, artificial intelligence, and systems analysis),

data discovery (covering data mining, geographic information systems, advanced databases and web-based

database development), and new media (covering digital imagery, digital video, web development and graphic

design). This flexibility enables students to build connections between these areas of study in a way that

makes sense to them intellectually, and in a fashion that also supports their diverse career goals. In addition,

we have worked to minimize long chains of pre-requisites in the major requirements to allow students

multiple entry points to the curriculum as well as the ability to take those courses that most interest them

early while they are still gauging their interest in the program.

With these goals in mind, there are three important learning objectives that underlie all of our courses. The

first is that students will graduate with a robust understanding of the vastly interdisciplinary nature of

computing. The second is that students will graduate with strong leadership skills, including effective

technical communication with both peers and non-technical people and project management abilities. The

third is that students will not only be able to use particular technical skills to solve familiar problems but will

have well-developed and flexible problem solving skills.

Within our curriculum we allow students to select from courses in three highly divergent emphases to form

one cohesive major. By offering a single major, we are asserting that regardless of one’s emphasis there is a

common set of knowledge and abilities that all students will have, and furthermore that set of knowledge and

abilities should support the area-specific work within each of the emphases. For example, every student

receives basic instruction in programming, databases, ethical and historical issues in computing, and human-

computer interaction. We view a central theme of the major to be developing problem-solving skills, using

computing as a tool in that process. Given the rapid growth in technology, it is impractical to try to graduate

students with the specific skills they will need in future employment. This is particularly true in an

interdisciplinary program where we cannot predict the specific domains within which our students will apply

their knowledge. By focusing primarily on the problem-solving skills that are used across domains, we equip

students for the diverse set of problems they may find themselves facing.

4. A Problem-Based Learning Liberal Arts IT Curriculum

The Information Technology Leadership department at Washington & Jefferson College follows a curriculum

that implements problem-based learning across the scope of the entire major. Taking this approach, we see

different types of work expected of students in different levels of courses as they proceed through the ITL

curriculum. At the 100-level, students do frequent small-scale exercises illustrating specific skills, and then as

the course proceeds begin to combine these specific skills to solve more complex problems. While students

may be given larger problems to solve late in the course, these are generally accompanied with guidelines on

how to decompose the problem into pieces of a magnitude more familiar to the student. A clear description of

a successful solution is provided.

Moving on in the curriculum at the 200-level, students begin to be expected to practice specific skills on their

own after instruction. The problem-solving starts at an intermediate level, but specific guidance is still given

on large-scale problem solving. There is still fairly explicit instruction on what features a successful solution

will have. As students reach the 300-level courses, they are expected to build on the skills they have obtained

earlier in the curriculum to develop solutions to open-ended problems with feedback from the instructor to

help keep them on the right track. There are fewer small assignments, as students are expected to identify the

component tasks or skills within the larger problems that they are solving. There is significant responsibility

on the student to shape the problem being solved and determine for themselves what a successful solution will

look like.

The application of problem-based learning to the ITL curriculum culminates in requiring all students to take

part in a 400-level capstone course titled Service Learning Project Management. The capstone requires all

students to tackle full scale problems without advance guidance in how the problem should be decomposed.

Specifically, students work in small teams to address the computing needs of a local non-profit as part of a

service-learning project. By this point in the program, students have the technical skills to complete the

projects, and the larger challenge is exercising the project-management skills to determine for themselves how

to manage the entire problem-solving process.

To help illustrate how we implement problem-based learning across our curriculum, we focus below on how

the computer science emphasis courses in particular shepherd students through successively high-level and

independent problem-solving tasks. Given below are some illustrative examples of problems, but this is not

intended to be an exhaustive listing of every such problem students would encounter. Instead we have focused

on the most significant project assigned for each representative course discussed.

Representative Course: Introduction to Programming (100-level)

Example Problem Given: Implement Missile Command using threads and arrays. (final

course project, following several shorter assignments, 2.5 weeks duration)

Level of Guidance:

 Relevant sample code for threads given.

 Ordered step-by-step description of

subtasks.

 Specification to use arrays to store data

on incoming missiles and active targets.

 Provision of basic equations for

distances between points, etc.

 Indication of time needed per subtask.

 Instructions on testing for each subtask.

 In-class exercises generating code

directly related to the more complicated

subtasks.

Learning Objectives/Outcomes:

 Understand and add to provided code.

 Solve a complex problem following a

detailed solution specification.

 Create a longer implementation out of

components the size of previously

completed assignments.

 Successfully work with a specified data

structure across all components of a

project.

 Manage completion and testing of

subtasks on a schedule.

Representative Course: Data Structures (200-level)

Example Problem Given: In 2-3 student teams, select one of a set of proposed projects

requiring a significant degree of data manipulation and create an efficient implementation,

e.g. book recommendation engine. (significant course project following half dozen traditional

assignments, 6 weeks duration)

Level of Guidance:

 Sample projects suggested, but students

must provide details.

 Weekly graded deadlines set for project

review and feedback by instructor.

 Explicit statement of task assignment to

team members for each week required

and approved.

 Data structure choice and

implementation strategy approved at first

weekly deadline.

 Class time spent meeting with groups,

discussing approach and timeliness of

progress.

Learning Objectives/Outcomes:

 Propose a feasible task decomposition of a

significant project.

 Select and argue for the appropriate data

structure and algorithms for the selected

project.

 Meet weekly team obligations, with

occasional instructor support.

 Implement and use studied data structures

and algorithms following agreed upon

interfaces.

 Develop group problem solving skills in a

structured environment.

Representative Course: Artificial Intelligence (300-level)

Example Problem Given: In 3-4 student teams, propose and implement a project requiring

the use of one of the studied AI algorithms, e.g. robot path planning. (significant course

project following half dozen traditional assignments, 6 weeks duration)

Level of Guidance:

 Initial project proposals are given

feedback before final proposal to be met

is submitted.

 Proposal for particular algorithm(s) to

employ and reasons for rejecting

competing alternatives submitted and

approved prior to implementation.

 Team plans for scheduling and workload

distribution are approved but not

monitored.

 Instructor available for outside-of-class

group meetings as initiated by teams.

Learning Objectives/Outcomes:

 Set and manage own problem

decomposition, with guidance.

 Select and justify choice of the most

suitable algorithm out of competing

approaches.

 Definite standards of success for an open-

ended AI problem.

 Deliver an extensive implementation as

part of a student-run team.

Representative Course: Service Learning Capstone (400-level)

Example Problem Given: In 3-4 student teams, design and implement a solution to a

current technology problem facing a local non-profit organization. (single course project,

entire semester duration)

Level of Guidance:

 Instructor introduces team members to

organization liaison.

 Deadlines given for initial project scope

document and final deliverable.

 Presentation of scope document to

department faculty with feedback

provided.

 Instructor leads general course

discussions related to readings on project

management.

Learning Objectives/Outcomes:

 Student teams manage relationship with

and needs assessment for organization.

 Student teams internally manage

establishing deadlines and task

assignments.

 Appropriate training provided for

organization.

 Successful resolution of organization’s

problem, with specification of further

steps needed as called for.

As has been noted, in the lower level courses students generally do not spend the entire course solving a

single problem. In Introduction to Programming, each concept is practiced during class with on-the-spot

activities directly connected to the material and then weekly homework generally requires students to

combine a few of these concepts to solve a relatively small problem. As the class progresses, the in-class

activities often take the form of giving students a broad problem to try to solve, and then after the students

have had time to think about the problems, having the instructor model talking through their own problem

solving process at the front of the room, writing code, and naturally having false starts and bugs to fix. These

classroom and homework activities provide students with the necessary scaffolding to succeed on the larger

problem presented at the end of the course.

We can also see above the way in which scaffolding is provided by the progression of courses. When students

are asked in Data Structures to create a plan for solving their problem, they are explicitly told to think back on

the specification they were given at the end of Introduction to Programming and to model their plan after that.

Students not only have a model of what they should be doing, but then have experienced the advantages of

viewing a problem as an organized ordered set of component steps, reducing the perception of the task as

busywork delaying them from really starting the project.

This pattern continues when it comes to the types of interactions instructors have with student teams in 200-

level versus 300-level courses. For the data structures project described about book recommendations, given

the content of the course, the project focused on storing and efficiently accessing the collected data about each

of the texts. It would have been simple for this project to expand to a point where it was intractable given the

knowledge of the students and the timeframe for the project, and a significant amount of instructor effort went

into ensuring that the scope of the project was kept at a reasonable level. It was not assumed that the students

could yet anticipate what could or could not be accomplished during the time allotted and with the techniques

they had learned. Rather, the instructor’s role was to act as a reality check on the regular progress reports and

proposals for what to accomplish in the coming week. However, this same project could be used very suitably

in our 300-level artificial intelligence course. In that setting, both because of the topic of the course, and more

importantly because of the level of the course, it would be expected that students could determine for

themselves what the appropriate scope for the project ought to be. While advice from the instructor would, of

course, also be available, students would be expected to lay out what they believed to be a reasonable set of

features to include. Deviations from that feature set would be permissible only through a written update to

their originally submitted project specification. In this way, the students become responsible not just for

finding a solution, but also for defining the problem itself – often an integral part of the problem-solving

process that students miss out on.

We would also like to note that not all of the problem-solving that we ask students to do takes place in a

programming or technical context. For example, all majors and minors in our program are required to take a

100-level course, IT & Society that introduces students to the history of and social issues in computing. This

is a reading and writing intensive course. While students usually enter this course having already completed

an English composition class, we focus on the particular difficulties students have in reading technical content

and judging the credibility of various sources. We also begin instructing students on how to write technical

content that is accurate and appropriate for the intended audience. As in our introductory programming

course, our goal in this initial course is largely just to make students aware of the complexities they will have

to face when reading and writing about technology.

For example, often students enter this course having learned to read a story or historical account, but poorly

equipped to read a description of a software or hardware technology and extract the important details that

would allow them to assess the applicability of that technology to a particular problem or analyze its social

impact. They are well shy of the ability they will need in upper-level courses of reading about a technique or

algorithm and being able to implement it in order to reach a higher-level goal. In order to work students

towards this necessary analytical skill, in IT & Society we explicitly model for students the work that goes

into effective reading. We may give samples of the questions that they ought to be asking themselves and

require them to practice answering those questions. We may spend class time actively reading together and

discussing what we are focusing on and why. By explicitly modeling the analytical complexities of reading at

the introductory level, we set the stage to expect them to practice this skill effectively and independently at

the upper-levels.

While our tables above illustrate how four courses students in the CS emphasis would experience our

curriculum, the same general breakdown of the level of guidance and learning objectives, with slight shifts for

subject content, would also apply in our New Media and Data Discovery emphases. In fact, with 100-level

courses within the department required of students in all emphases, all students are guaranteed to get the same

initial experience of solving a significant problem while being supported through detailed guidance. We

believe it is a sign of the success of our approach that the 400-level capstone is again a shared experience,

with second-semester seniors from all three emphases enrolled in the same course and often working on teams

mixed across the emphases. Regardless of the subject matter specialization students have selected, they are all

expected to enter that course prepared for the independent, real-world problem solving required of them.

The capstone projects epitomize the type of real-world robust problem solving that problem-based learning

strives to have students ultimately be able to accomplish. Rather than being the end product of a single course,

these projects are really the end product of an entire curriculum – again, not just the content of that

curriculum, but also the independence and critical analysis skills that are intentionally developed through the

progressive courses. The course instruction is spent helping students make the final transition of applying

their problem solving skills in a real world setting where money, organizational mission, and the needs and

priorities of a client become part of the equation as well. This is possible because of the shared preparation

that all of the students taking part have had, whether they have taken the same prior courses or not. While they

may start unaware that problem-solving is a skill they must learn, by the time they graduate they are capable

of explicitly discussing this issue and how they must adapt their problem-solving strategies to the

requirements of their team and their client.

5. The Successes of a Problem-Based Curriculum

The successes of our senior students in their capstone course give us confidence in the success of our

curriculum. Over the past five years all 52 students who have taken part in the ITL capstone have successfully

completed it. The capstone projects require students to define the problem that needed to be solved, identify a

solution that could be implemented within the time frame of one semester and with the resources available,

and deliver that solution. Recently students have completed projects ranging from constructing a preliminary

GIS system for an ecological activism organization to creating a promotional film for an arts education

organization. We believe these accomplishments, along with the students’ ability to explain their problem-

solving process, are positive signs for our curriculum helping students develop independent problem solving

skills.

We are also interested in whether the successes our students have while at W&J translate into successes in

their later careers. The ITL department is still quite new, so there are a limited number of graduates to survey,

particularly when focusing on those who have been out of school long enough to usefully reflect on the

benefits and shortcomings of our curriculum and its pedagogy. We do intend, once sufficient students have

graduated with an ITL major and spent at least 2-3 years in graduate school or the workplace, to enact a

rigorous analysis of our program outcomes. In the short term, however, we have been able to solicit feedback

from eight students who have graduated in the past few years, and maintained contact with one or more

members of the department. We asked them to reflect on the program, our curriculum, and how it has

prepared them for their current professional activities. These are only very preliminary results, but the

commonalities in the responses strongly reflect the advantages to our approach that we had hoped to see

commented on by our alumni.

Looking at their current careers, every student reported that their ITL courses were essential to their current

professional activities, and students consistently identified not just the content of the classes but the problem-

solving aspects of their education in general as being crucial to their current successes. One graduate from the

New Media emphasis credited her introductory programming and 200-level data mining courses as giving her

a solid grounding in problem-solving that she uses today in her job. Another New Media student reported:

“I don't work directly in New Media now but I'm still required to provide a very high level of work, just like I was

then. I got used to sitting in front of the computer for hours and sticking with a project until it was finished, even if it

required exploring different strategies to get the desired product.”

Some students talked about putting their time-management and project-management skills to use. Said one:

“I think the most valuable skills I learned in ITL was how to manage my projects better. I always felt like each course

spent a lot of time working on the baseline before tackling the main objective. In my everyday work, I spend a lot of

time making sure I understand the fundamentals before trying to finish the final project.”

Another student, reflecting on the curriculum as a whole, said simply: “All courses promoted independent

learning, which is essential in the work world.”

When asked what made the problems in their courses more than just projects, students consistently mentioned

the same properties of a problem that we stressed earlier in the paper that make it more robust than simply a

project: that it is a realistic problem where the student defines the scope and the outcomes for success. Every

student cited an example of a “real-world” problem they were able to solve, often from their senior capstone.

But some went further and discussed the way in which the project required “original thought” or “critical

thinking” and some talked explicitly about the portions of the problem that involved determining what

realistically could be accomplished and how:

“We had to figure out who could do the work, when the work could be done, when we could meet as a group. […]

This experience was more problem solving than working on a project because the final result was public facing, and

there was a certain feeling of it being more "real world" than any other project. Also, managing people is a problem

that people face every single day in the work place, and my experience with planning will help me in the future.”

A few students also talked about the need for innovative work in the context of having to do research. The

themes of applicability and personal connection to and ownership of the project were quite clear from all of

the responses.

While these responses come from a limited sample of students, we see that when these alumni reflect on their

learning, they are aware of exactly those advantages of problem-based learning that we hope to achieve. They

believe that they have become good problem-solvers, and understand the role of independent learning and a

focus on real-world applicability to good problem solving. They understand, in retrospect, how deep problem-

solving skills have been built up as they progress through the curriculum and are aware that it is not just the

subject-related prerequisites that help them succeed in their upper-level courses, it is also the general skills

they are acquiring in all of their lower-level courses combined that allow them to tackle real problems at the

end of their schooling and beyond. We are hopeful that future surveys will show the same positive reflections

amongst our alumni as a whole.

References

Barrows, H. S. (1996). Problem-based Learning in Medicine and Beyond: A Brief Overview. In L. Wilkerson

& W. Gijselaers (Eds.). Bringing problem-based Learning to Higher Education: Theory and Practice.

New Directions For Teaching and Learning Series, No. 68. San Francisco: Jossey-Bass.

Ben-David Kolikant, Y., & Ben Ari, M. (2008). Fertile Zones of Cultural Encounter in Computer Science

Education. Journal of the Learning Science. 17(1).

Bonwell, C. & Eison, J. (1991). Active Learning: Creating Excitement in the Classroom. Washington DC:

ASHE-ERIC Higher Education Reports.

ACM. (2006). Computing Curricula 2005, The Overview Report.

http://www.acm.org/education/education/curric_vols/ CC2005-March06Final.pdf

ACM. (2008). Computer Science Curriculum 2008.

http://www.acm.org//education/curricula/ComputerScience2008.pdf

ACM. (2008). Curriculum Guidelines for Undergraduate Degree Programs in Information Technology.

http://www.acm.org//education/curricula/IT2008%20Curriculum.pdf.

Belland, B. French, B. & Ertmer, P. (2009). Validity and Problem-based Learning Research: A Review of

Instruments Used to Assess Intended Learning Outcomes. Interdisciplinary Journal of Problem-based

Learning, 3(1).

Boud, D. & Feletti, G. (1997). The Challenge of Problem-based Learning (2nd ed.). New York: Routledge.

Collins, A. Brown, J.S. and Holum. A. (1991). Cognitive Apprenticeship: Making Thinking Visible.

American Educator. 12 (6).

Duch, B. Groh, S. & Allen, D. The Power of Problem-Based Learning: A Practical “How To” for Teaching

Undergraduate Courses in Any Discipline. Sterling, VA: Stylus Publishing.

Duffy, T. & Jonnasen, D. (1992). Constructivism and the Technology of Instruction: A Conversation.

Philadelphia, PA: Lawrence Erlbaum.

Fellows, S. & Ahmet, K. (1999). Inspiring students: Case studies in Motivating the Learner. London: Kogan

Page.

Fincher, S. & Petre, M. (1998). Project-based learning practices in computer science education. Proceedings

of the 28
th

 Annual Frontiers in Education – Volume 3. Washington DC: IEEE Computer Society.

 ar ıa-Famoso, M. (2006.) Problem-based learning: a case study in computer science. Proceedings of the

Third International Conference on Multimedia and Information & Communication Technologies in

Education.

Hmelo-Silver, C. E. (2004). Problem-based Learning: What and How Do Students Learn? Educational

Psychology Review. 16(3).

Jonassen, D. (2000). Toward a Design Theory of Problem Solving. Educational Technology Design and

Development, 48(4).

Jonnasen, D. (2004). Handbook of Research for Educational Communications and Technology (2
nd

). New

York: Lawrence Erlbaum.

Jonnasen, D. & Hung, W. (2008). All Problems are Not Equal: Implications for Problem-Based Learning. The

Interdisciplinary Journal of Problem-based Learning. 2(2).

Kay, J. Barg, M. Fekete, A. Greening, T. Hollands, O. Kingston, J. H. & Crawford, K. (2000). Problem-based

learning for foundation computer science courses. Computer Science Education. 10(2).

Kirschner, P. Sweller, J. & Clark, R. (2006). Why Minimal Guidance During Instruction Does Not Work: an

Analysis of the Failure of Constructivist, Discovery, Problem-based, Experiential, and Inquiry-based

Teaching. Educational Psychologist. 41(2).

Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge:

Cambridge University Press.

Maudsley, G. (1999). Do We All Mean the Same Thing by “Problem-based Learning”? A Review of the

Concepts and a Formulation of the Ground Rules. Academic Medicine. 74(2).

Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The Effectiveness of Problem-Based

Instruction: A Comparative Study of Instructional Methods and Student Characteristics. The

Interdisciplinary Journal of Problem-based Learning. 1(2).

Pintrich, P. (1995). Understanding Self-regulated Learning. New Directions for Teaching & Learning, 3(10).

Resnick , L. B. (ed). (1989). Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser.

Hillsdale, NJ: Lawrence Erlbaum.

Rhem, J. (1998). Problem-Based Learning: An Introduction. The National Learning and Teaching Forum.

8(1).

Savery, J. (2006). Overview of Problem-based Learning: Definitions and Distinctions. The Interdisciplinary

Journal of Problem-based Learning. 1(2).

Schwartz, P. Mennin, S. and Webb, G. (eds.) (2001). Problem Based-Learning: Case Studies, Experience and

Practice. Routledge.

Strobel, J., & van Barneveld, A. (2009). When is PBL More Effective? A Meta-synthesis of Meta- analyses

Comparing PBL to Conventional Classrooms. Interdisciplinary Journal of Problem-based Learning,

3(1).

Thomas, J. (2000). A Review of Research on Problem-based Learning. San Rafael: The Autodesk Foundation.

Uden, L. & Beaumont, C. (2005). Technology and Problem-based Learning. London: Information Science

Publishing.

Walker, A., & Leary, H. (2009). A Problem-based Learning Meta-analysis: Differences Across Problem

Types, Implementation Types, Disciplines, and Assessment Levels. Interdisciplinary Journal of

Problem-based Learning, 3(1).

Wilkerson L. & Gijselaer, W. (1996). Bringing Problem-based Learning to Higher Education: Theory and

Practice. New Directions in Teaching and Learning. No. 68. San Francisco: Jossey Bass.

Wilson, B. (1995). Constructivist Learning Environments: Case Studies in Instructional Design. Englewood

Cliffs, NJ: Educational Technology Publications.

